Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2298507

ABSTRACT

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Middle Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bayes Theorem , COVID-19/therapy , Renin-Angiotensin System/drug effects , Hospitalization , COVID-19 Drug Treatment/methods , Critical Illness , Receptors, Chemokine/antagonists & inhibitors
2.
JAMA ; 329(1): 39-51, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2287001

ABSTRACT

Importance: The longer-term effects of therapies for the treatment of critically ill patients with COVID-19 are unknown. Objective: To determine the effect of multiple interventions for critically ill adults with COVID-19 on longer-term outcomes. Design, Setting, and Participants: Prespecified secondary analysis of an ongoing adaptive platform trial (REMAP-CAP) testing interventions within multiple therapeutic domains in which 4869 critically ill adult patients with COVID-19 were enrolled between March 9, 2020, and June 22, 2021, from 197 sites in 14 countries. The final 180-day follow-up was completed on March 2, 2022. Interventions: Patients were randomized to receive 1 or more interventions within 6 treatment domains: immune modulators (n = 2274), convalescent plasma (n = 2011), antiplatelet therapy (n = 1557), anticoagulation (n = 1033), antivirals (n = 726), and corticosteroids (n = 401). Main Outcomes and Measures: The main outcome was survival through day 180, analyzed using a bayesian piecewise exponential model. A hazard ratio (HR) less than 1 represented improved survival (superiority), while an HR greater than 1 represented worsened survival (harm); futility was represented by a relative improvement less than 20% in outcome, shown by an HR greater than 0.83. Results: Among 4869 randomized patients (mean age, 59.3 years; 1537 [32.1%] women), 4107 (84.3%) had known vital status and 2590 (63.1%) were alive at day 180. IL-6 receptor antagonists had a greater than 99.9% probability of improving 6-month survival (adjusted HR, 0.74 [95% credible interval {CrI}, 0.61-0.90]) and antiplatelet agents had a 95% probability of improving 6-month survival (adjusted HR, 0.85 [95% CrI, 0.71-1.03]) compared with the control, while the probability of trial-defined statistical futility (HR >0.83) was high for therapeutic anticoagulation (99.9%; HR, 1.13 [95% CrI, 0.93-1.42]), convalescent plasma (99.2%; HR, 0.99 [95% CrI, 0.86-1.14]), and lopinavir-ritonavir (96.6%; HR, 1.06 [95% CrI, 0.82-1.38]) and the probabilities of harm from hydroxychloroquine (96.9%; HR, 1.51 [95% CrI, 0.98-2.29]) and the combination of lopinavir-ritonavir and hydroxychloroquine (96.8%; HR, 1.61 [95% CrI, 0.97-2.67]) were high. The corticosteroid domain was stopped early prior to reaching a predefined statistical trigger; there was a 57.1% to 61.6% probability of improving 6-month survival across varying hydrocortisone dosing strategies. Conclusions and Relevance: Among critically ill patients with COVID-19 randomized to receive 1 or more therapeutic interventions, treatment with an IL-6 receptor antagonist had a greater than 99.9% probability of improved 180-day mortality compared with patients randomized to the control, and treatment with an antiplatelet had a 95.0% probability of improved 180-day mortality compared with patients randomized to the control. Overall, when considered with previously reported short-term results, the findings indicate that initial in-hospital treatment effects were consistent for most therapies through 6 months.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Follow-Up Studies , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Critical Illness/therapy , Bayes Theorem , COVID-19 Serotherapy , Adrenal Cortex Hormones/therapeutic use , Anticoagulants/adverse effects , Receptors, Interleukin-6
4.
JAMA ; 327(13): 1247-1259, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801957

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Critical Illness , Platelet Aggregation Inhibitors , Venous Thromboembolism , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Bayes Theorem , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Respiration, Artificial , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
6.
J Clin Microbiol ; 60(4): e0228321, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1759279

ABSTRACT

Tools to detect SARS-CoV-2 variants of concern and track the ongoing evolution of the virus are necessary to support public health efforts and the design and evaluation of novel COVID-19 therapeutics and vaccines. Although next-generation sequencing (NGS) has been adopted as the gold standard method for discriminating SARS-CoV-2 lineages, alternative methods may be required when processing samples with low viral loads or low RNA quality. To this aim, an allele-specific probe PCR (ASP-PCR) targeting lineage-specific single nucleotide polymorphisms (SNPs) was developed and used to screen 1,082 samples from two clinical trials in the United Kingdom and Brazil. Probit regression models were developed to compare ASP-PCR performance against 1,771 NGS results for the same cohorts. Individual SNPs were shown to readily identify specific variants of concern. ASP-PCR was shown to discriminate SARS-CoV-2 lineages with a higher likelihood than NGS over a wide range of viral loads. The comparative advantage for ASP-PCR over NGS was most pronounced in samples with cycle threshold (CT) values between 26 and 30 and in samples that showed evidence of degradation. Results for samples screened by ASP-PCR and NGS showed 99% concordant results. ASP-PCR is well suited to augment but not replace NGS. The method can differentiate SARS-CoV-2 lineages with high accuracy and would be best deployed to screen samples with lower viral loads or that may suffer from degradation. Future work should investigate further destabilization from primer-target base mismatch through altered oligonucleotide chemistry or chemical additives.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , COVID-19/diagnosis , Humans , Polymerase Chain Reaction , SARS-CoV-2/genetics
7.
Lancet Infect Dis ; 21(11): 1518-1528, 2021 11.
Article in English | MEDLINE | ID: covidwho-1636381

ABSTRACT

BACKGROUND: A more transmissible variant of SARS-CoV-2, the variant of concern 202012/01 or lineage B.1.1.7, has emerged in the UK. We aimed to estimate the risk of critical care admission, mortality in patients who are critically ill, and overall mortality associated with lineage B.1.1.7 compared with non-B.1.1.7. We also compared clinical outcomes between these two groups. METHODS: For this observational cohort study, we linked large primary care (QResearch), national critical care (Intensive Care National Audit & Research Centre Case Mix Programme), and national COVID-19 testing (Public Health England) databases. We used SARS-CoV-2 positive samples with S-gene molecular diagnostic assay failure (SGTF) as a proxy for the presence of lineage B.1.1.7. We extracted two cohorts from the data: the primary care cohort, comprising patients in primary care with a positive community COVID-19 test reported between Nov 1, 2020, and Jan 26, 2021, and known SGTF status; and the critical care cohort, comprising patients admitted for critical care with a positive community COVID-19 test reported between Nov 1, 2020, and Jan 27, 2021, and known SGTF status. We explored the associations between SARS-CoV-2 infection with and without lineage B.1.1.7 and admission to a critical care unit (CCU), 28-day mortality, and 28-day mortality following CCU admission. We used Royston-Parmar models adjusted for age, sex, geographical region, other sociodemographic factors (deprivation index, ethnicity, household housing category, and smoking status for the primary care cohort; and ethnicity, body-mass index, deprivation index, and dependency before admission to acute hospital for the CCU cohort), and comorbidities (asthma, chronic obstructive pulmonary disease, type 1 and 2 diabetes, and hypertension for the primary care cohort; and cardiovascular disease, respiratory disease, metastatic disease, and immunocompromised conditions for the CCU cohort). We reported information on types and duration of organ support for the B.1.1.7 and non-B.1.1.7 groups. FINDINGS: The primary care cohort included 198 420 patients with SARS-CoV-2 infection. Of these, 117 926 (59·4%) had lineage B.1.1.7, 836 (0·4%) were admitted to CCU, and 899 (0·4%) died within 28 days. The critical care cohort included 4272 patients admitted to CCU. Of these, 2685 (62·8%) had lineage B.1.1.7 and 662 (15·5%) died at the end of critical care. In the primary care cohort, we estimated adjusted hazard ratios (HRs) of 2·15 (95% CI 1·75-2·65) for CCU admission and 1·65 (1·36-2·01) for 28-day mortality for patients with lineage B.1.1.7 compared with the non-B.1.1.7 group. The adjusted HR for mortality in critical care, estimated with the critical care cohort, was 0·91 (0·76-1·09) for patients with lineage B.1.1.7 compared with those with non-B.1.1.7 infection. INTERPRETATION: Patients with lineage B.1.1.7 were at increased risk of CCU admission and 28-day mortality compared with patients with non-B.1.1.7 SARS-CoV-2. For patients receiving critical care, mortality appeared to be independent of virus strain. Our findings emphasise the importance of measures to control exposure to and infection with COVID-19. FUNDING: Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, and the Medical Sciences Division of the University of Oxford.


Subject(s)
COVID-19/mortality , Critical Care/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , England/epidemiology , Female , Hospital Mortality , Humans , Male , Middle Aged , Risk Assessment/statistics & numerical data , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , Young Adult
8.
J Infect Dis ; 224(4): 595-605, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1367024

ABSTRACT

BACKGROUND: Convalescent plasma containing neutralizing antibody to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is under investigation for coronavirus disease 2019 (COVID-19) treatment. We report diverse virological characteristics of UK intensive care patients enrolled in the Immunoglobulin Domain of the REMAP-CAP randomized controlled trial that potentially influence treatment outcomes. METHODS: SARS-CoV-2 RNA in nasopharyngeal swabs collected pretreatment was quantified by PCR. Antibody status was determined by spike-protein ELISA. B.1.1.7 was differentiated from other SARS-CoV-2 strains using allele-specific probes or restriction site polymorphism (SfcI) targeting D1118H. RESULTS: Of 1274 subjects, 90% were PCR positive with viral loads 118-1.7 × 1011IU/mL. Median viral loads were 40-fold higher in those IgG seronegative (n = 354; 28%) compared to seropositives (n = 939; 72%). Frequencies of B.1.1.7 increased from <1% in November 2020 to 82% of subjects in January 2021. Seronegative individuals with wild-type SARS-CoV-2 had significantly higher viral loads than seropositives (medians 5.8 × 106 and 2.0 × 105 IU/mL, respectively; P = 2 × 10-15). CONCLUSIONS: High viral loads in seropositive B.1.1.7-infected subjects and resistance to seroconversion indicate less effective clearance by innate and adaptive immune responses. SARS-CoV-2 strain, viral loads, and antibody status define subgroups for analysis of treatment efficacy.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Viral Load/immunology , Aged , Antibodies, Neutralizing/immunology , COVID-19/virology , Critical Illness , Female , Humans , Immunization, Passive , Immunoglobulin G/immunology , Male , Middle Aged , RNA, Viral/immunology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , COVID-19 Serotherapy
9.
Intensive Care Med ; 47(8): 867-886, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1305144

ABSTRACT

PURPOSE: To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. RESULTS: We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (- 1 to 15), 0 (- 1 to 9) and-1 (- 1 to 7), respectively, compared to 6 (- 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively). CONCLUSION: Among critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Antiviral Agents/therapeutic use , Bayes Theorem , Critical Illness , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
11.
Ann Am Thorac Soc ; 17(7): 879-891, 2020 07.
Article in English | MEDLINE | ID: covidwho-679536

ABSTRACT

There is broad interest in improved methods to generate robust evidence regarding best practice, especially in settings where patient conditions are heterogenous and require multiple concomitant therapies. Here, we present the rationale and design of a large, international trial that combines features of adaptive platform trials with pragmatic point-of-care trials to determine best treatment strategies for patients admitted to an intensive care unit with severe community-acquired pneumonia. The trial uses a novel design, entitled "a randomized embedded multifactorial adaptive platform." The design has five key features: 1) randomization, allowing robust causal inference; 2) embedding of study procedures into routine care processes, facilitating enrollment, trial efficiency, and generalizability; 3) a multifactorial statistical model comparing multiple interventions across multiple patient subgroups; 4) response-adaptive randomization with preferential assignment to those interventions that appear most favorable; and 5) a platform structured to permit continuous, potentially perpetual enrollment beyond the evaluation of the initial treatments. The trial randomizes patients to multiple interventions within four treatment domains: antibiotics, antiviral therapy for influenza, host immunomodulation with extended macrolide therapy, and alternative corticosteroid regimens, representing 240 treatment regimens. The trial generates estimates of superiority, inferiority, and equivalence between regimens on the primary outcome of 90-day mortality, stratified by presence or absence of concomitant shock and proven or suspected influenza infection. The trial will also compare ventilatory and oxygenation strategies, and has capacity to address additional questions rapidly during pandemic respiratory infections. As of January 2020, REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) was approved and enrolling patients in 52 intensive care units in 13 countries on 3 continents. In February, it transitioned into pandemic mode with several design adaptations for coronavirus disease 2019. Lessons learned from the design and conduct of this trial should aid in dissemination of similar platform initiatives in other disease areas.Clinical trial registered with www.clinicaltrials.gov (NCT02735707).


Subject(s)
Community-Acquired Infections/therapy , Coronavirus Infections/therapy , Influenza, Human/therapy , Pneumonia, Viral/therapy , Pneumonia/therapy , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Evidence-Based Medicine , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2
12.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
13.
Crit Care Med ; 49(1): 102-111, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1024138

ABSTRACT

OBJECTIVES: To identify characteristics that predict 30-day mortality among patients critically ill with coronavirus disease 2019 in England, Wales, and Northern Ireland. DESIGN: Observational cohort study. SETTING: A total of 258 adult critical care units. PATIENTS: A total of 10,362 patients with confirmed coronavirus disease 2019 with a start of critical care between March 1, 2020, and June 22, 2020, of whom 9,990 were eligible (excluding patients with a duration of critical care less than 24 hr or missing core variables). MEASUREMENTS AND MAIN RESULTS: The main outcome measure was time to death within 30 days of the start of critical care. Of 9,990 eligible patients (median age 60 yr, 70% male), 3,933 died within 30 days of the start of critical care. As of July 22, 2020, 189 patients were still receiving critical care and a further 446 were still in acute hospital. Data were missing for between 0.1% and 7.2% of patients across prognostic factors. We imputed missing data ten-fold, using fully conditional specification and continuous variables were modeled using restricted cubic splines. Associations between the candidate prognostic factors and time to death within 30 days of the start of critical care were determined after adjustment for multiple variables with Cox proportional hazards modeling. Significant associations were identified for age, ethnicity, deprivation, body mass index, prior dependency, immunocompromise, lowest systolic blood pressure, highest heart rate, highest respiratory rate, Pao2/Fio2 ratio (and interaction with mechanical ventilation), highest blood lactate concentration, highest serum urea, and lowest platelet count over the first 24 hours of critical care. Nonsignificant associations were found for sex, sedation, highest temperature, and lowest hemoglobin concentration. CONCLUSIONS: We identified patient characteristics that predict an increased likelihood of death within 30 days of the start of critical care for patients with coronavirus disease 2019. These findings may support development of a prediction model for benchmarking critical care providers.


Subject(s)
COVID-19/mortality , Critical Illness/mortality , Severity of Illness Index , Adult , COVID-19/therapy , Cohort Studies , Critical Illness/therapy , England , Female , Hospital Mortality , Humans , Male , Middle Aged , Northern Ireland , Prognosis , Respiration, Artificial/mortality , Wales
14.
Am J Respir Crit Care Med ; 203(5): 565-574, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-970749

ABSTRACT

Rationale: By describing trends in intensive care for patients with coronavirus disease (COVID-19) we aim to support clinical learning, service planning, and hypothesis generation.Objectives: To describe variation in ICU admission rates over time and by geography during the first wave of the epidemic in England, Wales, and Northern Ireland; to describe trends in patient characteristics on admission to ICU, first-24-hours physiology in ICU, processes of care in ICU and patient outcomes; and to explore deviations in trends during the peak period.Methods: A cohort of 10,741 patients with COVID-19 in the Case Mix Program national clinical audit from February 1 to July 31, 2020, was used. Analyses were stratified by time period (prepeak, peak, and postpeak periods) and geographical region. Logistic regression was used to estimate adjusted differences in 28-day in-hospital mortality between periods.Measurements and Main Results: Admissions to ICUs peaked almost simultaneously across regions but varied 4.6-fold in magnitude. Compared with patients admitted in the prepeak period, patients admitted in the postpeak period were slightly younger but with higher degrees of dependency and comorbidity on admission to ICUs and more deranged first-24-hours physiology. Despite this, receipt of invasive ventilation and renal replacement therapy decreased, and adjusted 28-day in-hospital mortality was reduced by 11.8% (95% confidence interval, 8.7%-15.0%). Many variables exhibited u-shaped or n-shaped curves during the peak.Conclusions: The population of patients with COVID-19 admitted to ICUs, and the processes of care in ICUs, changed over the first wave of the epidemic. After adjustment for important risk factors, there was a substantial improvement in patient outcomes.


Subject(s)
COVID-19/epidemiology , Critical Care/methods , Intensive Care Units/statistics & numerical data , Pandemics , Age Factors , Aged , COVID-19/therapy , Comorbidity , England/epidemiology , Female , Hospital Mortality/trends , Humans , Length of Stay , Middle Aged , Northern Ireland/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Wales/epidemiology
15.
Intensive Care Med ; 46(11): 2035-2047, 2020 11.
Article in English | MEDLINE | ID: covidwho-841815

ABSTRACT

PURPOSE: To describe critical care patients with COVID-19 across England, Wales and Northern Ireland and compare them with a historic cohort of patients with other viral pneumonias (non-COVID-19) and with international cohorts of COVID-19. METHODS: Extracted data on patient characteristics, acute illness severity, organ support and outcomes from the Case Mix Programme, the national clinical audit for adult critical care, for a prospective cohort of patients with COVID-19 (February to August 2020) are compared with a recent retrospective cohort of patients with other viral pneumonias (non-COVID-19) (2017-2019) and with other international cohorts of critical care patients with COVID-19, the latter identified from published reports. RESULTS: 10,834 patients with COVID-19 (70.1% male, median age 60 years, 32.6% non-white ethnicity, 39.4% obese, 8.2% at least one serious comorbidity) were admitted across 289 critical care units. Of these, 36.9% had a PaO2/FiO2 ratio of ≤ 13.3 kPa (≤ 100 mmHg) consistent with severe ARDS and 72% received invasive ventilation. Acute hospital mortality was 42%, higher than for 5782 critical care patients with other viral pneumonias (non-COVID-19) (24.7%), and most COVID-19 deaths (88.7%) occurred before 30 days. Meaningful international comparisons were limited due to lack of standardised reporting. CONCLUSION: Critical care patients with COVID-19 were disproportionately non-white, from more deprived areas and more likely to be male and obese. Conventional severity scoring appeared not to adequately reflect their acute severity, with the distribution across PaO2/FiO2 ratio categories indicating acutely severe respiratory disease. Critical care patients with COVID-19 experience high mortality and place a great burden on critical care services.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Pneumonia, Viral/epidemiology , Aged , COVID-19 , Cohort Studies , Coronavirus Infections/therapy , England/epidemiology , Female , Humans , Intensive Care Units , Male , Middle Aged , Northern Ireland/epidemiology , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2 , State Medicine , Wales/epidemiology
16.
JAMA ; 324(13): 1317-1329, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739603

ABSTRACT

Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Coronavirus Infections/drug therapy , Hydrocortisone/administration & dosage , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Inflammatory Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Early Termination of Clinical Trials , Female , Humans , Hydrocortisone/adverse effects , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Shock/drug therapy , Shock/etiology , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL